Molecule of the Month: HIV Capsid
At the center of HIV, an unusual cone-shaped capsid protects the viral genome and delivers it into infected cells
Staying Flexible
Breaking Symmetry
Fighting Back
Exploring the Structure
HIV Capsid (PDB entries 3mge and 3p05)
The capsid protein is able to form hexamers and pentamers by shifting slightly in structure. This is an example of the principle of "quasiequivalence", first proposed by Caspar and Klug in 1962. Quasiequivalence is the way that many viruses build capsids that are much larger than is possible with perfect symmetry, but that still only use a single type of protein chain. In the HIV capsid, the interactions between the many subunits are similar, but are deformed slightly to accommodate the different shapes of the cone-shaped portion and the round caps. To take a closer look at these two structures, PDB entries 3mge and 3p05 , click on the image for an interactive Jmol.
Topics for Further Discussion
- You can explore the structure of capsid and other HIV proteins in the online animation: The Structural Biology of HIV.
- To explore the flexibility of capsid, you can use the Pairwise Structure Alignment tool at the RCSB PDB to overlap the different structures.
- In order to solve the structures of the hexagonal and pentagonal complexes, researchers engineered capsid with cysteines to lock the structure together--see if you can find them when you're viewing these structures.
Related PDB-101 Resources
- Browse Viruses
- Browse HIV and AIDS
- Browse Integrative/Hybrid Methods
References
- G. Zhao, J. R. Perilla, E. L. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn, A. M. Groneborn, K. Schulten, C. Aiken & P. Zhang (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497, 643-646.
- N. Biris, Y. Yang, A. B. Taylor, A. Tomashevski, M. Guo, P. J. Hart, F. Diaz-Griffero & D. N. Ivanov (2012) Structure of the rhesus monkey TRIM5alpha PRYSPRY domain, the HIV capsid recognition module. Proc. Natl. Acad. Sci. USA 109, 13278-13283.
- O. Pornillos, B. K. Ganser-Pornillos & M. Yeager (2011) Atomic-level modelling of the HIV capsid. Nature 469, 424-427.
- O. Pornillos, B. K. Ganser-Pornillos, S. Banumathi, Y. Hua & M. Yeager (2010) Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus. J. Mol. Biol. 401, 985-995.
- I. J. Byeon, X. Meng, J. Jung, G. Zhao, R. Yang, J. Ahn, J. Shi, J. Concel, C. Aiken, P. Zhang & A. M. Gronenborn (2009) Structural convergence between cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139, 780-790.
- O. Pornillos, B. K. Ganser-Pornillos, B. N. Kelly, Y. Hua, F. G. Whitby, C. D. Stout, W. I. Sundquist, C. P. Hill & M. Yeager (2009) X-ray structures of the hexameric building block of HIV capsid. Cell 137, 1282-1292.
- G. J. Towers (2007) The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology 4:40.
- S. Monaco-Malbet, C. Berthet-Colominas, A. Novelli, N. Battai, N. Piga, V. Cheynet, F. Mallet & S. Cusack (2000) Mutual conformational adaptations in antigen and antibody upon complex formation between an Fab and HIV-1 capsid protein p24. Structure 15, 1069-1077.
- T. R. Gamble, F. F. Vajdos, S. Yoo, D. K. Worthylake, M Houseweart, W. I. Sundquist & C. P. Hill (1996) Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285-1294.
- D. L. D. Caspar and A. Klug (1962) Physical principles in the construction of regular viruses. Cold Spring Harbor Symposium on Quantitative Biology 27, 1-24.
July 2013, David Goodsell
http://doi.org/10.2210/rcsb_pdb/mom_2013_7