Molecule of the Month: Globin Evolution
The mechanisms of molecular evolution are revealed in globin sequences and structures.
Tree of Life
Globin Evolution
Globin Mutation
Mechanisms of Evolution
Reconstructing Ancient Globins
Exploring the Structure
Sequence Conservation in the Hemoglobin Beta-Chain
Molecular biologists often look at evolutionary variation is terms of “conservation.” Regions of the protein with essential functions are very similar when we look at different organisms, whereas regions that are playing a supporting role are often quite different. Hemoglobin is shown here (PDB entry 2hhb), with one beta-chain colored by conservation, calculated using the online ConSurf Server and based on sequences from several hundred organisms. As you can see, regions involved in subunit contacts and lining the heme pocket are highly conserved (colored bright blue), but the exterior portions of the protein are not (colored white). To explore this structure in more detail, click on the image for an interactive JSmol.
Topics for Further Discussion
- You can use the “Pairwise Structure Alignment” tool to compare sequences and structures of proteins in the PDB archive. For example, try aligning the hemoglobin alpha and beta chains to see their similarities and differences.
- The “Protein Feature View” has a convenient menu for finding structures of a particular protein from different organisms. For example, take a look at the Protein Feature View for myoglobin and look for the little box in blue next to the image.
Related PDB-101 Resources
- Browse Biomolecules
- Browse Molecular Evolution
References
- J. F. Storz, J. C. Opazo & F. G. Hoffmann (2013) Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Molecular Phylogenetics and Evolution 66, 469-478.
- H. Noguchi, K. L. Campbell, C. Ho, S. Unzai, S.-Y. Park & J. R. H. Tame (2012) Structures of haemoglobin from whooly mammoth in liganded and unliganded states. Acta Crystallographica D68, 1441-1449.
- 2nrl: E. R. Schreiter, M. M. Rodriguez, A. Weichsel, W. R. Montfort & J. Bonaventura (2007) S-nitrosylation-induced conformation change in blackfin tuna myoglobin. Journal of Biological Chemistry 282, 19773-19780.
- 1ut0: D. DeSanctis, S. Dewilde, A. Pesce, L. Moens, P. Ascenzi, T. Hankeln, T. Burmester & M. Bolognesi (2004) Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination. Journal of Molecular Biology 336, 917-927.
- 1shr: U. Sen, J. Dasgupta, D. Choudhury, P. Datta, A. Chakrabarti, S. B. Chakrabarty, A. Chakrabarty & J. K. Dattagupta (2004) Crystal structures of HbA2 and HbE and modeling of hemoglobin delta4: interpretation of the thermal stability and the antisickling effect of HbA2 and identification of the ferrocyanide binding site in Hb. Biochemistry 43, 12477-12488.
- 1oj6: A. Pesce, S. Dewilde, M. Nardini, L. Moens, P. Ascenzi, T. Hankeln, T. Burmester & M. Bolognesi (2003) Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure 11, 1087-1095.
- 1i3d: R. D. Kidd, H. M. Baker, A. J. Mathews, T. Brittain & E. N. Baker (2001) Oligomerization and ligand binding in a homotetrameric hemoglobin: two high-resolution crystal structures of hemoglobin Bart’s (gamma(4)), a marker for alpha-thalassemia. Protein Science 10, 1739-1749.
- 1a9w: A. J. Sutherland-Smith, H. M. Baker, O. M. Hofmann, T. Brittain & E. N. Baker (1998) Crystal structure of a human embryonic haemoglobin: the carbonmonoxy form of gower II (alpha2 epsilon2) haemoglobin at 2.9 A resolution. Journal of Molecular Biology 280, 475-484.
- 1lhs: M. Nardini, C. Tarricone, M. Rizzi, A. Lania, A. Desideri, G. DeSanctis, M. Coletta, R. Petruzzelli, P. Ascenzi, A. Coda & M. Bolognesi (1995) Reptile heme protein structure: X-ray crystallographic study of the aquo-met and cyano-met derivatives of the loggerhead sea turtle (Caretta caretta) myoglobin at 2.0 A resolution. Journal of Molecular Biology 247, 459-465.
- 1ymb: S. V. Evans & G. D. Brayer (1990) High resolution study of the three-dimensional structure of horse heart metmyoglobin. Journal of Molecular Biology 213, 885-897.
- 3rgk: S. R. Hubbard, S. G. Lambright, S. G. Boxer & W. A. Hendrickson (1990) X-ray crystal structure of a recombinant human myoglobin mutant at 2.8 A resolution. Journal of Molecular Biology 20, 215-218.
- 2hhb: G. Fermi, M. F. Perutz, B. Shaanan & R. Fourme (1984) The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. Journal of Molecular Biology 175, 159-174.
- 1mbo: S. E. Phillips (1980) Structure and refinement of oxymyoglobin at 1.6 A resolution. Journal of Molecular Biology 142, 531-554.
- 1fdh: J. A. Frier & M. F. Perutz (1977) Structure of human foetal deoxyhaemoglobin. Journal of Molecular Biology 112, 97-112.
February 2017, David Goodsell
http://doi.org/10.2210/rcsb_pdb/mom_2017_2