Molecule of the Month: Proteins and Nanoparticles
Nanotech scientists are designing new ways to combine proteins and nanoparticles
Designing a Fullerene Binder
Conducting Complex
Cupping Calixarenes
Protein Modulators
Exploring the Structure
Biosensor for MRI
An isotope of xenon (129-Xe) is used as a contrast agent for magnetic resonance imaging (MRI) in medical diagnostic testing, both as a gas to image airspaces in the lung, and dissolved in body fluids to image the bloodstream and tissues. Designed cryptophanes are being developed as a way to target the xenon to specific proteins. Cryptophanes are hollow shells, but with openings on the sides that allow entry and exit of host molecules. The cryptophane shown here is the right size for a single xenon atom (shown in magenta), and is coupled to a specific inhibitor of carbonic anhydrase, which recognizes a zinc atom (turquoise) in the enzyme active site. Upon binding of the designed cryptophane to the target protein, xenon displays a distinctive MRI spectrum. To explore the structure of this cryptophane bound to human carbonic anhydrase II (PDB entry 3cyu), click on the image for an interactive JSmol.
Topics for Further Discussion
- Recognition of host molecule by a protein can also occur with no charged residues. For example, try looking at the insulin amino acids recognized by the inner core of cucurbituril, a molecule with a shape of a pumpkin (pdb entry 3q6e—be sure to look at the second biological assembly, since the first one doesn't include the nanoparticle).
- To explore the structure and properties of the nanoparticles themselves, try looking at the entries in the Ligand Depot, such as the one for fullerene or the molecular tweezer.
Related PDB-101 Resources
- Browse Nanotechnology
References
- S van Dun, C Ottmann, LG Milroy & L Brunsveld (2017) Supramolecular chemistry targeting proteins. Journal of the American Chemical Society 139, 13960-13968.
- 5et3: KH Kim, DK Ko, YT Kim, NH Kim, J Paul, SQ Zhang, CB Murray, R Acharya, WF DeGrado, YH Kim & G Grigoryan (2016) Protein-directed self-assembly of a fullerene crystal. Nature Communications 7, 11429-11429.
- 4prq: RE McGovern, AA McCarthy & PB Crowley (2014) Protein assembly mediated by sulfonatocalix[4]arene. Chemical Communications 50, 10412-10415.
- 5oeh: D Bier, R Rose, K Bravo-Rodriguez, M Bartel, JM Ramirez-Anguita, S Dutt, C Wilch, FG Klärner, E Sanchez-Garcia, T Schrader & C Ottmann (2013) Molecular tweezers modulate 14-3-3 protein-protein interactions. Nature Chemistry 5, 234-239.
- 3nkx: M Molzan, B Schumacher, C Ottmann, A Baljuls, L Polzien, M Weyand, P Thiel, R Rose, M Rose, P Kuhenne, M Kaiser, UR Rapp, J Kuhlmann & C Ottmann (2010) Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Molecular Cell Biology 30, 4698-4711.
- 3q6e: JM Chinai, AB Taylor, LM Ryno, ND Hargreaves, CA Morris, PJ Hart & AR Urbach (2011) Molecular recognition of insulin by a synthetic receptor. Journal of the American Chemical Society 133, 8810-8813.
- G Grigoryan, YH Kim, R Acharya, K Axelrod, RM Jain, L Willis, M Drndic, JM Kikkawa & WF DeGrado (2011) Computational design of virus-like protein assemblies on carbon nanotube surfaces. Science 332, 1071-1076.
- 3cyu: JA Aaron, JM Chambers, KM Jude, L Di Costanzo, IJ Dmochowski & DW Christianson (2008) Structure of a 129Xe-cryptophane biosensor complexed with human carbonic anhydrase II. Journal of the American Chemical Society 130, 6942-6943.
- MM Spence, SM Rubin, IE Dimitrov, EJ Ruiz, DE Wemmer, A Pines, SQ Yao, F Tian & PG Schultz (2001) Functionalized xenon as a biosensor. Proceedings of the National Academy of Science USA 98, 10654-10657.
- J Baggott (1996) Perfect symmetry – The accidental discovery of buckminsterfullerene. Oxford University Press.
June 2018, Luigi Di Costanzo & David Goodsell
http://doi.org/10.2210/rcsb_pdb/mom_2018_6