Molecule of the Month: Proteins and Biominerals
Small biomineral crystals are used to build bone, eggshells and even tiny compasses.
Beautiful Bone Structure
Ancient Eggshells
Building Minerals
Magnetic Minerals
Magnetochrome or MamP, shown here from the PDB entry 4jj0, builds perfect crystals of iron oxide. MamP is a modular protein composed of a central domain linked to two consecutive magnetochrome domains. The central domain brings together acidic glutamate amino acids to form a pocket where iron nucleation is initiated. The hemes in magnetochrome domains, which are similar to cytochrome c, shuttle electrons to switch the oxidation state of the iron atoms as they are combined with oxygen in the growing magnetite crystal.
Exploring the Structure
Nanocrystal-binding Protein
Scientists are mimicking the process of biomineralization as a strategy to produce precise nanocrystals, for use in engineered materials with tailored magnetic, optical, and medical properties. For example, the designed protein nvPizza2-S16H58 (PDB entry 5chb ) sandwiches the smallest known nanocrystal, a precise 3D lattice consisting of 7 cadmium ions and 12 chloride ions. In the designed protein, the cadmium-chloride nanocrystal is coordinated by a set of symmetrically-positioned histidines extending inward from the propeller-shaped protein complex.
Topics for Further Discussion
- Several other proteins assist with the formation of magnetite crystals. Try searching for “Magnetite” in the main RCSB PDB website to see them.
- Use the Pairwise Structure Alignment tool to compare the similar structures of struthiocalcin and antifreeze proteins.
Related PDB-101 Resources
- Browse Molecular Infrastructure
- Browse Nanotechnology
References
- Lu, H., Lutz, H., Roeters, S.J., Hood, M.A., Schäfer, A., Muñoz-Espí, R., Berger, R., Bonn, M., Weidner, T. (2018) Calcium-Induced molecular rearrangement of peptide folds enables biomineralization of vaterite calcium carbonate. Journal of the American Chemical Society 140: 2793-2796.
- Demarchi, B., Hall,S., Roncal-Herrero, T., Freeman, C.L., Woolley, J., Crisp, M.K., Wilson, J., Fotakis, A., Fischer, R., Kessler, B.M., Rakownikow, R., Jersie-Christensen, J.V., Olsen, J., Haile, J., Thomas, C.W., Marean, J., Parkington, S., Presslee, J., Lee-Thorp, P., Ditchfield, J.F., Hamilton, M.W., Ward, C.M., Wang, M.D., Shaw, T., Harrison, M., Domínguez-Rodrigo, R., MacPhee, A., Kwekason, M., Ecker, L., Kolska Horwitz, M., Chazan, R., Kröger, J., Thomas-Oates, J.H., Harding, E., Cappellini, K., Penkman Collins, M.J. (2016) Protein sequences bound to mineral surfaces persist into deep time. Elife 5: e17092.
- 4uww: Ruiz-Arellano, R.R., Medrano, F.J., Moreno, A., Romero, A. (2015) Structure of struthiocalcin-1, an intramineral protein from Struthio camelus eggshell, in two crystal forms. Acta Crystallographica D Biological Crystallography 71: 809-818.
- 5chb: Voet, A.R., Noguchi, H., Addy, C., Zhang, K.Y., Tame, J.R. (2015) Biomineralization of a Cadmium Chloride Nanocrystal by a Designed Symmetrical Protein. Angewandte Chemie International Edition English 54: 9857-9860.
- 4jj0: Siponen, M.I., Legrand, P., Widdrat, M., Jones, S.R., Zhang, W.J., Chang, M.C., Faivre, D., Arnoux, P., Pignol, D. (2013) Structural insight into magnetochrome-mediated magnetite biomineralization. Nature 502: 681-684.
- 2zib: Nishimiya, Y., Kondo, H., Takamichi, M., Sugimoto, H., Suzuki, M., Miura, A., Tsuda, S. (2008) Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus. Journal Molecular Biology 382: 734-746.
- 1q8h: Hoang, Q.Q., Sicheri, F., Howard, A.J., Yang, D.S. (2003) Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 425: 977-980.
- Blakemore, R.P., Frankel, R.B., Kalmijn, A.J. (1980) South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286: 384-385.
April 2019, Luigi Di Costanzo and David Goodsell
http://doi.org/10.2210/rcsb_pdb/mom_2019_4