Molecule of the Month: Vascular Endothelial Growth Factor (VegF) and Angiogenesis
VegF promotes blood vessel formation (angiogenesis), affecting cancer proliferation, wound healing, and other bodily processes.
Building New Vessels
Pairing Up for Activation
Bevacizumab: A Double-Edged Sword
Laying Pipelines
Wound Healing
Exploring the Structure
VegF and Bevacizumab
The structure of bevacizumab with VegF (PDB ID 1bj1) shows that two bevacizumab molecules interact with VegF, blocking both ends of the VegF dimer (as seen on the left). Thus, it is unable to dimerize the receptor and unable to activate the angiogenic signaling cascade. As with most antibodies, highly-complementary interactions are formed between bevacizumab and VegF. For example, a set of three molecular interactions centered around a glutamine are critical for the binding of bevacizumab to VegF. These include hydrogen bonding interactions with a neighboring threonine, and hydrophobic interactions with tryptophan and isoleucine that constrain the glutamine in the proper conformation. To explore this structure in more detail, click on the image for an interactive JSmol.
Topics for Further Discussion
- There are high levels of redundancy and crosstalk in the pathways that trigger angiogenesis. To explore signalling molecules in other pathways, try starting with platelet-derived grown factor (PDB ID 6t9e) and fibroblast growth factor (PDB ID 1qql).
- Dimerization is a common mechanism for activation of receptors. For another example, see the article on epidermal growth factor.
Related PDB-101 Resources
- Browse Cancer
- Browse Cellular Signaling
References
- Ye, X., Gaucher, J. F., Vidal, M., Broussy, S. (2021). A structural overview of vascular endothelial growth factors pharmacological ligands: from macromolecules to designed peptidomimetics. Molecules 26, 6759.
- 5t89: Markovic-Mueller, S., Stuttfeld, E., Asthana, M., Weinert, T., Bliven, S., Goldie, K. N., ... Ballmer-Hofer, K. (2017). Structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A. Structure 25, 341-352.
- Toivanen, P. I., Nieminen, T., Laakkonen, J. P., Heikura, T., Kaikkonen, M. U., Ylä-Herttuala, S. (2017). Snake venom VEGF Vammin induces a highly efficient angiogenic response in skeletal muscle via VEGFR-2/NRP specific signaling. Scientific reports 7, 5525.
- Zhao, Y., Adjei, A. A. (2015). Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist 20, 660-673.
- 2m59: Manni, S., Mineev, K.S., Usmanova, D., Lyukmanova, E.N., Shulepko, M.A., Kirpichnikov, M.P., Winter, J., Matkovic, M., Deupi, X., Arseniev, A.S., Ballmer-Hofer, K. (2014) Structural and functional characterization of alternative transmembrane domain conformations in VEGF receptor 2 activation. Structure 22, 1077-1089.
- Span, E. A., Goodsell, D. S., Ramchandran, R., Franzen, M. A., Herman, T., Sem, D. S. (2013). Protein structure in context: the molecular landscape of angiogenesis. Biochemistry and Molecular Biology Education 41, 213-223.
- Kazazi-Hyseni, F., Beijnen, J. H., Schellens, J. H. (2010). Bevacizumab. Oncologist 15, 819-825.
- 1wq8: Suto, K., Yamazaki, Y., Morita, T., Mizuno, H. (2005). Crystal structures of novel vascular endothelial growth factors (VEGF) from snake venoms: insight into selective VEGF binding to kinase insert domain-containing receptor but not to fms-like tyrosine kinase-1. Journal of Biological Chemistry 280, 2126-2131.
- 1bj1: Muller, Y. A., Chen, Y., Christinger, H. W., Li, B., Cunningham, B. C., Lowman, H. B., de Vos, A. M. (1998). VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 Å resolution and mutational analysis of the interface. Structure 6, 1153-1167.
- 1vpf: Muller, Y. A., Li, B., Christinger, H. W., Wells, J. A., Cunningham, B. C., De Vos, A. M. (1997). Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proceedings of the National Academy of Sciences 94, 7192-7197.
March 2022, Ethan Cartagena, Mariam Gelashvili, Jasmine Keyes, Elizabeth Rosenzweig, David S. Goodsell, Stephen K. Burley
http://doi.org/10.2210/rcsb_pdb/mom_2022_3