Kinetochore
Influenza Virus
Bacteriophage T4 Infection
HIV-Infected Cell
Caulobacter Polar Microdomain
HIV Vaccine
Insulin Release
JCVI-syn3A Minimal Cell
Casein Micelle and Fat Globule in Milk
Escherichia coli Bacterium
Cellulose Synthase
Myoglobin in a Whale Muscle Cell
Collagen and Extracellular Matrix
CytoSkeleton
Transfer RNA and Gag Protein
RecA and DNA
Model of a Mycoplasma Cell
Phage-based COVID-19 Vaccine
SARS-CoV-2 and Neutralizing Antibodies
Red Blood Cell Cytoskeleton
SARS-CoV-2 mRNA Vaccine
SARS-CoV-2 Fusion
Respiratory Droplet
Coronavirus Life Cycle
Myelin
Immunological Synapse
Coronavirus
Influenza Vaccine
Poliovirus Neutralization
Lipid Droplets
Measles Virus Proteins
Last Universal Common Ancestor
Abiogenesis
Excitatory and Inhibitory Synapses
Insulin Action
Zika Virus
Ebola Virus
Chloroplast
Autophagy
Mycoplasma mycoides
Vascular Endothelial Growth Factor (VegF) Signaling
Biosites: Cytoplasm
Biosites: Basement Membrane
Biosites: Red Blood Cell
Biosites: Blood Plasma
Biosites: Muscle
Biosites: Nucleus
Blood
HIV in Blood Plasma
Escherichia coli

Molecular Landscapes by David S. Goodsell

SARS-CoV-2 mRNA Vaccine, 2020

Acknowledgement: Illustration by David S. Goodsell, RCSB Protein Data Bank; doi: 10.2210/rcsb_pdb/goodsell-gallery-027

Messenger RNA (mRNA) vaccines developed for the COVID-19 pandemic are composed of long strands of RNA (magenta) that encode the SARS-CoV-2 spike surface glycoprotein enclosed in lipids (blue) that deliver the RNA into cells. Several different types of lipids are used, including familar lipids, cholesterol, ionizable lipids that interact with RNA, and lipids connected to polyethylene glycol chains (green) that help shield the vaccine from the immune system, lengthening its lifetime following administration. In this idealized illustration, all of the lipids are arranged in a simple circular bilayer that surrounds the mRNA and the PEG strands have both extended and folded conformations. In reality, the structure may be less regular, as suggested in the NanoLetters paper included below. Learn more about how this vaccine works in Resources to Fight the COVID-19 Pandemic.

References
Corbett, K. S., et al. (2020) SARS-CoV-2 mRNA vaccine designs enable by prototype pathogen preparedness. Nature 586, 567-571.
Eygeris, Y., et al. (2020) Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Letters 20, 4543-4549.